Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 179: 114017, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342539

RESUMO

This study produced pH-sensing carboxymethyl cellulose (CMC) films functionalized with bioactive compounds obtained by pressurized liquid extraction (PLE) of grape peel to monitor the freshness of pork and milk. A semi-continuous PLE was conducted using hydroethanolic solution (70:30, v/v) at a flow rate of 5 mL/min, 15 MPa, and 60 °C. The films were produced by the casting technique using CMC (2.5 %, w/v), glycerol (1 %, v/v), and functionalized with 10, 30, and 50 % (v/v) grape peel extract. From the results obtained, LC-MS/MS revealed that PLE extracted twenty-seven phenolic compounds. The main phenolic compounds were kaempferol-3-glucoside (367.23 ± 25.88 µg/mL), prunin (270.23 ± 3.62 µg/mL), p-coumaric acid (236.43 ± 26.02 µg/mL), and procyanidin B1 (117.17 ± 7.29 µg/mL). The CMC films presented suitable color and mechanical properties for food packaging applications. The addition of grape peel extract promoted the pH-sensing property, showing the sensitivity of anthocyanins to pH changes. The films functionalized with grape peel extract presented good release control of bioactive compounds, making them suitable for food packaging applications. When applied to monitor the freshness of pork and milk, the films exhibited remarkable color changes associated with the pH of the food during storage. In conclusion, PLE is a sustainable approach to obtaining bioactive compounds from the grape peel, which can be applied in the formulation of pH-sensing films as a promising sustainable material to monitor food freshness during storage.


Assuntos
Carne de Porco , Carne Vermelha , Vitis , Animais , Suínos , Carboximetilcelulose Sódica/química , Carne Vermelha/análise , Leite , Antocianinas/química , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Fenóis
2.
Food Res Int ; 173(Pt 1): 113332, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803643

RESUMO

This study evaluated the use of a semi-continuous high-pressure hydrothermal process for the recovery of value-added products from pitaya peel. The process was carried out at 15 MPa, a water flow rate of 2 mL/min, a solvent-to-feed ratio of 60 g water/g pitaya peel, and temperatures ranging from 40 to 210 °C. The results show that extraction temperatures (between 40 and 80 °C) promoted the recovery of betacyanin (1.52 mg/g), malic acid (25.6 mg/g), and citric acid (25.98 mg/g). The major phenolic compounds obtained were p-coumaric acid (144.63 ± 0.42 µg/g), protocatechuic acid (91.43 ± 0.32 µg/g), and piperonylic acid (74.2 ± 0.31 µg/g). The hydrolysis temperatures (between 150 and 210 °C) could produce sugars (18.09 mg/g). However, the hydrolysis process at temperatures above 180 °C generated Maillard reaction products, which increased the total phenolic compounds and antioxidant activity of the hydrolysates. Finally, the use of semi-continuous high-pressure hydrothermal process can be a sustainable and promising approach for the recovery of value-added compounds from pitaya peel, advocating a circular economy approach in the agri-food industry.


Assuntos
Cactaceae , Fenóis , Antioxidantes , Solventes , Extratos Vegetais , Água
3.
Bioresour Technol ; 369: 128469, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509309

RESUMO

The development and sustainability of second-generation biorefineries are essential for the production of high added value compounds and biofuels and their application at the industrial level. Pretreatment is one of the most critical stages in biomass processing. In this specific case, hydrothermal pretreatments (liquid hot water [LHW] and steam explosion [SE]) are considered the most promising process for the fractionation, hydrolysis and structural modifications of biomass. This review focuses on architecture of the plant cell wall and composition, fundamentals of hydrothermal pretreatment, process design integration, the techno-economic parameters of the solubilization of lignocellulosic biomass (LCB) focused on the operational costs for large-scale process implementation and the global manufacturing cost. In addition, profitability indicators are evaluated between the value-added products generated during hydrothermal pretreatment, advocating a biorefinery implementation in a circular economy framework. In addition, this review includes an analysis of environmental aspects of sustainability involved in hydrothermal pretreatments.


Assuntos
Vapor , Água , Biomassa , Análise Custo-Benefício , Biocombustíveis , Lignina
4.
Environ Technol ; : 1-19, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36510756

RESUMO

ABSTRACTThis study evaluated the effectiveness of a semi-continuous flow-through subcritical water hydrolysis (SWH) pretreatment of brewer's spent grains (BSG) for subsequent application in the anaerobic digestion (AD) process. BSG pretreatment was conducted at 160 °C and 15 MPa with a flow rate of 10 mL water min-1 and 15 g water g-1 BSG. The results revealed that SWH attacked the hemicellulose structure, releasing arabinose (46.54 mg g-1) and xylose (39.90 mg g-1) sugars, and proteins (34.89 mg g-1). The start-up of anaerobic reactors using pretreated BSG (747.71 L CH4 kg-1 TVS) increased the methane yield compared with the reactor without pretreatment (53.21 L CH4 kg-1 TVS). For the process with pretreatment, the generation of electricity (134 kWh t-1 BSG) and heat (604 MJ t-1) are responsible for the mitigation of 43.90 kg CO2 eq t-1 BSG. The adoption of SWH as an eco-friendly pretreatment of biomass for AD could be a technological route to increase methane-rich biogas and bioenergy production, supporting the circular economy transition by reducing the carbon footprint of the beer industry.

5.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234823

RESUMO

The detection of analytes in complex organic matrices requires a series of analytical steps to obtain a reliable analysis. Sample preparation can be the most time-consuming, prolonged, and error-prone step, reducing the reliability of the investigation. This review aims to discuss the advantages and limitations of extracting bioactive compounds, sample preparation techniques, automation, and coupling with on-line detection. This review also evaluates all publications on this topic through a longitudinal bibliometric analysis, applying statistical and mathematical methods to analyze the trends, perspectives, and hot topics of this research area. Furthermore, state-of-the-art green extraction techniques for complex samples from vegetable matrices coupled with analysis systems are presented. Among the extraction techniques for liquid samples, solid-phase extraction was the most common for combined systems in the scientific literature. In contrast, for on-line extraction systems applied for solid samples, supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, and pressurized liquid extraction were the most frequent green extraction techniques.


Assuntos
Cromatografia com Fluido Supercrítico , Verduras , Micro-Ondas , Reprodutibilidade dos Testes , Extração em Fase Sólida
6.
Food Res Int ; 160: 111711, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076407

RESUMO

This study aimed to extract anthocyanins from dried and semi-defatted açaí pulp using green technologies based on the coupling of pressurized liquid extraction (PLE) with in-line purification through solid-phase extraction (SPE) and on-line analysis by high-performance liquid chromatography (HPLC). Critical parameters that affect the extraction efficiency and purification were investigated and optimized by response surface methodology (RSM). PLE was performed with acidified water at different pH (2.0, 4.5, and 7.0) and temperatures (40, 80, and 120 °C) at 15 MPa, 2 mL/min, and solvent-to-feed mass ratio equal to 40. SPE was optimized in a column packed with the adsorbent PoraPak™ Rxn. Different ethanol concentrations (50, 75, and 100 %) and temperatures (30, 40, and 50 °C) were evaluated for the anthocyanin's elution. The optimal conditions of the two experimental designs were determined by the RSM, firstly for PLE: 71 °C and pH 2; then using this PLE condition, the optimization of the SPE was obtained: 30 °C and 50 % ethanol. The developed PLE method provided similar anthocyanin yield to other techniques, and the coupling with SPE in-line produced an extract 5-fold more concentrated than PLE alone. Therefore, the system (PLE-SPE × HPLC-PDA) proved to be a powerful tool for monitoring the extraction process in real-time.


Assuntos
Antocianinas , Euterpe , Dióxido de Carbono , Cromatografia Líquida de Alta Pressão , Etanol , Extração em Fase Sólida
7.
Biomass Convers Biorefin ; : 1-12, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36090306

RESUMO

The growing demand for space and financial resources to manage current and new municipal solid waste (MSW) landfills has become a massive challenge for several countries. Additionally, landfills contribute to adverse environmental impacts such as pollution and CO2 (carbon dioxide) and CH4 (methane) emissions. This paper has analyzed the possibility of producing biogas from landfilled MSW. An easily degradable fraction of landfilled MSW with 8 years of landfilling was mined and subjected to chemical characterization and elemental composition analysis. The abbreviation for the study sample was called ED8 - Mined. The low values of lignin (24.5%) and nitrogen content (0.7%) and high values of holocellulose (75.9%) and C/N (46.1%) on dry basis were obtained resulting in materials with the potential to be used for biogas generation. Recalcitrant materials were found in greater amounts than easily biodegradable fresh MSW fractions. The reuse of energy from landfilled MSW can contribute positively to the country's environment and economy, reducing environmental liabilities and generating energy in a controlled way. In Delta A Sanitary Landfill, Southeastern Brazil, the recovery of the ED8 - Mined would reflect a significant recovery of about 100,000 tonnes of landfilled materials for annual MSW cells of about 450,000 tonnes, allowing recovery of materials and space expansion for rejects. Graphical abstract: fx1.

8.
Food Res Int ; 158: 111547, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840241

RESUMO

The valorization of the by-product of the agro-industrial processing of jabuticaba (Myrciaria cauliflora) was studied by hydrothermal pretreatment. Experiments were carried out in a semi-continuous flow-through process for 45 min, at 15 MPa, a water flow rate of 5 mL min-1, and at different temperatures (60 - 210 °C). The results demonstrate that fructose and glucose were the sugars with the highest concentration in all analyzed treatments. Arabinose and cellobiose were obtained only at higher temperatures (above 130 °C), demonstrating that they were released from the hydrolysis of polysaccharides. The highest cyanidin-3-glucoside yield (1.88 mg g-1) was achieved at 60 °C. The treatments at 135 and 210 °C promoted the degradation of cyanidin-3-glucoside, leading to yields lower than 0.05 mg g-1. At 60 °C, it was possible to recover 74.18 mg g-1 of glucose, 103.77 mg g-1 of fructose, 30.75 mg g-1 of citric acid, and 1.88 mg g-1 of cyanidin-3-glucoside, without the presence of furfural and 5-hydroxymethylfurfural. The results suggest that hydrothermal pretreatment is a promising eco-friendly technology to recover sugars, organic acids, and anthocyanins from jabuticaba by-products in a circular economy framework.


Assuntos
Antocianinas , Myrtaceae , Frutose , Glucose , Açúcares
9.
Food Res Int ; 157: 111470, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761701

RESUMO

This study evaluated the subcritical water hydrolysis (SWH) of brewer's spent grains (BSG) to obtain sugars and amino acids. The experimental conditions investigated the hydrolysis of BSG in a single flow-through reactor and in two sequential reactors operated in semi-continuous mode. The hydrolysis experiments were carried out for 120 min at 15 MPa, 5 mL water min-1, at different temperatures (80 - 180 °C) and using an S/F of 20 and 10 g solvent g-1 BSG, for the single and two sequential reactors, respectively. The highest monosaccharide yields were obtained at 180 °C in a single reactor (47.76 mg g-1 carbohydrates). With these operational conditions, the hydrolysate presented xylose (0.477 mg mL-1) and arabinose (1.039 mg mL-1) as main sugars, while low contents of furfural (310.7 µg mL-1), 5-hydroxymethylfurfural (<1 mg L-1), and organic acids (0.343 mg mL-1) were obtained. The yield of proteins at 180 °C in a process with a single reactor was 43.62 mg amino acids g-1 proteins, where tryptophan (215.55 µg mL-1), aspartic acid (123.35 µg mL-1), valine (64.35 µg mL-1), lysine (16.55 µg mL-1), and glycine (16.1 µg mL-1) were the main amino acids recovered in the hydrolysate. In conclusion, SWH pretreatment is a promising technology to recover bio-based compounds from BSG; however, further studies are still needed to increase the yield of bioproducts from lignocellulosic biomass to explore two sequential reactors.


Assuntos
Açúcares , Água , Aminoácidos/análise , Grão Comestível/química , Hidrólise , Açúcares/análise , Água/análise
10.
Anal Chim Acta ; 1178: 338845, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482871

RESUMO

The comprehensive analysis of phenolic compounds from natural products comprises critical steps, including quantitative extraction, extract preparation, and chromatographic procedure. Performing these steps off-line requires a long time to obtain results, besides being laborious and more error-prone. This work discusses the concept and presents the details of assembling and validating a new system to comprehensively analyze phenolic compounds in natural products. The system is based on a bidimensional separation through the combination of pressurized liquid extraction with in-line solid-phase extraction coupled online with HPLC-PDA. The system proved to be able to perform a bidimensional separation to characterize the sample and ensure quantitative extraction of all detected components using the most appropriate extraction solvent gradient depending on the raw sample analyzed. The 1st dimension separation is achieved by PLE-SPE with a solvent gradient and differential interactions of extracted compounds with the adsorbent. The 2nd dimension presents the HPLC-PDA separation. The extraction/separation process can be monitored in real-time, and kinetic extraction curves for individual compounds can also be obtained to ensure quantitative extraction. Thus, the 2D PLE-SPE × HPLC-PDA may provide fast and precise comprehensive analyses of a large plethora of phenolic compounds, finding relevant applications in the chemical, food, pharmaceutical, and agricultural fields.


Assuntos
Produtos Biológicos , Cromatografia Líquida de Alta Pressão , Fenóis/análise , Extração em Fase Sólida , Solventes
11.
Int J Biol Macromol ; 189: 544-553, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34450148

RESUMO

In this study, biodegradable films produced with starch, citric pectin, and functionalized with antioxidant compounds from feijoa (Acca sellowiana (Berg) Burret) were in situ applied for the conservation of ground beef, bread, and grapes. The results demonstrated that the films produced were an excellent source of stable antioxidant compounds, with antimicrobial activity against Escherichia coli, Salmonella, and Shigella. The bioactive films based on biological macromolecules positively stabilized the polyunsaturated fatty acids and deterioration reactions in ground beef. The release of bioactive compounds from the films was responsible for inhibiting molds and yeasts in bread, increasing their shelf life for 30 days of storage. The application of film coating and packaging in grapes increased postharvest conservation and maintained steady physicochemical characteristics. Therefore, the innovative films produced can release bioactive compounds with antioxidant and antimicrobial activity, and consequently, can be proposed as an effective material for food conservation, increasing the shelf life of perishable food products.


Assuntos
Materiais Biocompatíveis/química , Ácido Cítrico/química , Feijoa/química , Conservação de Alimentos , Pectinas/química , Extratos Vegetais/química , Amido/química , Anti-Infecciosos/farmacologia , Antioxidantes/análise , Bactérias/efeitos dos fármacos , Pão , Lipídeos/química , Carne , Testes de Sensibilidade Microbiana , Vitis
12.
Sci Total Environ ; 765: 142717, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077218

RESUMO

This study evaluates the benefits of mineral fertilizers replacement for biodigested vinasse. Data from experimental anaerobic digestion (AD) of vinasse were applied to support the analysis. Based on previous experiments, this assessment assumed that vinasse production could reach 2.38 × 107 m3/year generating around 66,585 MWh/year of electric energy from biogas burning in the Administrative Region of Campinas (ARC). This amount of energy could supply more than 103,000 inhabitants and avoid 35,892 tCO2eq/year (from electric energy replacement). The biodigested vinasse might also reduce the total N, P, and K mineral fertilizers demand per hectare of sugarcane crop in 30%, 1%, and 46%, respectively, avoiding additional greenhouse gas emissions of 111,877 tCO2eq/year. There is no biodigested vinasse surplus for a moderate fertigation rate of 100 m3/ha, complying with local environmental laws related to nutrients excess side effects in areas destined to sugarcane crop. Notwithstanding, a Geographic Information System analysis for a small adjacent area to ARC indicated nine different fertigation rates, ranging from 50 to 100 m3/ha. Even though the general analysis for ARC shows high NPK replacement levels, the fertigation practices should be subsidized for robust soil analysis and adequate to safe environmental levels. A management tool can be designed using the results here presented to subsidize investments for AD widespread adoption by the sugarcane industry to catch a reasonable practice from the economic and environmental perspectives.


Assuntos
Saccharum , Biocombustíveis , Fertilizantes/análise , Solo
13.
Front Chem ; 8: 507887, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102442

RESUMO

Flavonoids are one of the main groups of polyphenols found in natural products. Traditional flavonoid extraction techniques are being replaced by advanced techniques to reduce energy and solvent consumption, increase efficiency and selectivity, to meet increased market demand and environmental regulations. Advanced technologies, such as microwaves, ultrasound, pressurized liquids, supercritical fluids, and electric fields, are alternatives currently being used. These modern techniques are generally faster, more environmentally friendly, and with higher automation levels compared to conventional extraction techniques. This review will discuss the different methods available for flavonoid extraction from natural sources and the main parameters involved (temperature, solvent, sample quantity, extraction time, among others). Recent trends and their industrial importance are also discussed in detail, providing insight into their potential. Thus, this paper seeks to review the innovations of compound extraction techniques, presenting in each of them their advantages and disadvantages, trying to offer a broader scope in the understanding of flavonoid extraction from different plant matrices.

14.
FEMS Microbiol Lett ; 366(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31350996

RESUMO

Butanol has advantages over ethanol as a biofuel. Although butanol is naturally produced by some Clostridium species, clostridial fermentation has inherent characteristics that prevent its industrial application. Butanol-producing Saccharomyces cerevisiae strains may be a solution to this problem. The aim of this study was to evaluate the ability of wild-type and industrial Brazilian strains of S. cerevisiae to produce n-butanol using glycine as co-substrate and evaluate the relationship between the production of this alcohol and other metabolites in fermented broth. Of the 48 strains analyzed, 25 were able to produce n-butanol in a glycine-containing medium. Strains exhibited different profiles of n-butanol, isobutanol, ethanol, glycerol and acetic acid production. Some wild-type strains showed substantial n-butanol production capability, for instance UFMG-CM-Y267, which produced about 12.7 mg/L of butanol. Although this concentration is low, it demonstrates that wild-type S. cerevisiae can synthesize butanol, suggesting that selection and genetic modification of this microorganism could yield promising results. The findings presented here may prove useful for future studies aimed at optimizing S. cerevisiae strains for butanol production.


Assuntos
Butanóis/metabolismo , Metaboloma , Metabolômica , Saccharomyces cerevisiae/metabolismo , Análise por Conglomerados , Fermentação , Engenharia Metabólica , Metabolômica/métodos , Nitrogênio/metabolismo , Saccharomyces cerevisiae/classificação
15.
Waste Manag ; 79: 580-594, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30343791

RESUMO

Different types of biomass are being examined for their optimum hydrogen production potentials and actual hydrogen yields in different experimental set-ups and through different chemical synthetic routes. In this review, the observations emanating from research findings on the assessment of hydrogen synthesis kinetics during fermentation and gasification of different types of biomass substrates have been concisely surveyed from selected publications. This review revisits the recent progress reported in biomass-based hydrogen synthesis in the associated disciplines of microbial cell immobilization, bioreactor design and analysis, ultrasound-assisted, microwave-assisted and ionic liquid-assisted biomass pretreatments, development of new microbial strains, integrated production schemes, applications of nanocatalysis, subcritical and supercritical water processing, use of algae-based substrates and lastly inhibitor detoxification. The main observations from this review are that cell immobilization assists in optimizing the biomass fermentation performance by enhancing bead size, providing for adequate cell loading and improving mass transfer; there are novel and more potent bacterial and fungal strains which improve the fermentation process and impact on hydrogen yields positively; application of microwave irradiation and sonication and the use of ionic liquids in biomass pretreatment bring about enhanced delignification, and that supercritical water biomass processing and dosing with metal-based nanoparticles also assist in enhancing the kinetics of hydrogen synthesis. The research areas discussed in this work and their respective impacts on hydrogen synthesis from biomass are arguably standalone. Thence, further work is still required to explore the possibilities and techno-economic implications of combining these areas for developing robust and integrated biomass-to-hydrogen synthetic schemes.


Assuntos
Hidrogênio , Líquidos Iônicos , Biomassa , Reatores Biológicos , Fermentação
16.
Food Res Int ; 99(Pt 1): 393-402, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28784497

RESUMO

This work involves the application of physical separation methods to concentrate the pigment of semi-defatted annatto seeds, a noble vegetal biomass rich in bixin pigments. Semi-defatted annatto seeds are the residue produced after the extraction of the lipid fraction from annatto seeds using supercritical fluid extraction (SFE). Semi-defatted annatto seeds are use in this work due to three important reasons: i) previous lipid extraction is necessary to recovery the tocotrienol-rich oil present in the annatto seeds, ii) an initial removal of the oil via SFE process favors bixin separation and iii) the cost of raw material is null. Physical methods including i) the mechanical fractionation method and ii) an integrated process of mechanical fractionation method and low-pressure solvent extraction (LPSE) were studied. The integrated process was proposed for processing two different semi-defatted annatto materials denoted Batches 1 and 2. The cost of manufacture (COM) was calculated for two different production scales (5 and 50L) considering the integrated process vs. only the mechanical fractionation method. The integrated process showed a significantly higher COM than mechanical fractionation method. This work suggests that mechanical fractionation method is an adequate and low-cost process to obtain a rich-pigment product from semi-defatted annatto seeds.


Assuntos
Bixaceae/química , Carotenoides/economia , Carotenoides/isolamento & purificação , Fracionamento Químico , Cromatografia com Fluido Supercrítico/economia , Lipídeos/isolamento & purificação , Sementes/química , Análise Custo-Benefício , Dados Preliminares , Solventes/química
17.
Crit Rev Biotechnol ; 35(3): 302-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24494703

RESUMO

There is increased interest in reducing our reliance on fossil fuels and increasing the share of renewable raw materials in our energy supply chain due to environmental and economic concerns. Ethanol is emerging as a potential alternative to liquid fuels due to its eco-friendly characteristics and relatively low production costs. As ethanol is currently produced from commodities also used for human and animal consumption, there is an urgent need of identifying renewable raw materials that do not pose a competitive problem. Lignocellulosic agricultural residues are an ideal choice since they can be effectively hydrolyzed to fermentable sugars and integrated in the context of a biorefinery without competing with the food supply chain. However, the conventional hydrolysis methods still have major issues that need to be addressed. These issues are related to the processing rate and generation of fermentation inhibitors, which can compromise the quality of the product and the cost of the process. As the knowledge of the processes taking place during hydrolysis of agricultural residues is increasing, new techniques are being exploited to overcome these drawbacks. This review gives an overview of the state-of-the-art of hydrolysis with subcritical and supercritical water in the context of reusing agricultural residues for the production of suitable substrates to be processed during the fermentative production of bioethanol. Presently, subcritical and/or supercritical water hydrolysis has been found to yield low sugar contents mainly due to concurrent competing degradation of sugars during the hydrothermal processes. In this line of thinking, the present review also revisits the recent applications and advances to provide an insight of future research trends to optimize on the subcritical and supercritical process kinetics.


Assuntos
Agricultura , Biocombustíveis , Biomassa , Biotecnologia/métodos , Etanol , Hidrólise
18.
Crit Rev Biotechnol ; 31(3): 250-63, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21073399

RESUMO

This paper provides an overview of the recent advances and trends in research in the biological production of hydrogen (biohydrogen). Hydrogen from both fossil and renewable biomass resources is a sustainable source of energy that is not limited and of different applications. The most commonly used techniques of biohydrogen production, including direct biophotolysis, indirect biophotolysis, photo-fermentation and dark-fermentation, conventional or "modern" techniques are examined in this review. The main limitations inherent to biochemical reactions for hydrogen production and design are the constraints in reactor configuration which influence biohydrogen production, and these have been identified. Thereafter, physical pretreatments, modifications in the design of reactors, and biochemical and genetic manipulation techniques that are being developed to enhance the overall rates and yields of biohydrogen generation are revisited.


Assuntos
Bactérias/química , Fermentação , Hidrogênio/química , Fotólise , Anaerobiose , Biocombustíveis , Biomassa , Reatores Biológicos , Humanos , Organismos Geneticamente Modificados , Ruminococcus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...